
Journal of Sound and <ibration (2000) 235(4), 539}565
doi:10.1006/jsvi.1999.2935, available online at http://www.idealibrary.com on
DEVELOPMENT OF SIMPLE MODELS FOR THE ELASTIC
FORCES IN THE ABSOLUTE NODAL CO-ORDINATE

FORMULATION

M. BERZERI AND A. A. SHABANA

Department of Mechanical Engineering, ;niversity of Illinois at Chicago,
842 =est ¹aylor Street, Chicago, I¸ 60607-7022, ;.S.A.

(Received 9 July 1999, and in ,nal form 1 December 1999)

The objective of this study is to develop simple and accurate elastic force models that can
be used in the absolute nodal co-ordinate formulation for the analysis of two-dimensional
beams. These force models which account for the coupling between bending and axial
deformations are derived using a continuum mechanics approach, without the need for
introducing a local element co-ordinate system. Four new di!erent force models that include
di!erent degrees of complexity are presented. It is shown that the vector of the elastic forces
can be signi"cantly simpli"ed as compared to the elastic force model developed for the
absolute nodal co-ordinate formulation using a local element frame [1]. Despite the
simplicity of the new models, they account for elastic non-linearity in the
strain}displacement relationship. Therefore, they lead to more accurate results as compared
to the more complex models developed using the local frame method which does not
account for the non-linearities in the strain}displacement relationships. Numerical results
are presented in order to demonstrate the use of the new models and test their performances
in the analysis of large deformations of #exible multibody systems.

( 2000 Academic Press
1. INTRODUCTION

The absolute nodal co-ordinate formulation is a "nite element non-incremental formulation
recently introduced to study #exible multibody applications [1}3]. In this formulation, the
nodal co-ordinates are de"ned in a global co-ordinate system. An important feature of this
method is the use of global slopes instead of angles to de"ne the orientation of the elements.
Therefore, the absolute nodal co-ordinate formulation does not lead to linearization of
the kinematic equations as in the case when in"nitesimal rotations are used as nodal
co-ordinates. Consequently, beam and plate elements, that are considered as
non-isoparametric in the classical "nite element formulations [4], become isoparametric
when the absolute nodal co-ordinate formulation is used. Because of this property, good
results have been obtained using the absolute nodal co-ordinate formulation in the cases of
large rotation and large deformation problems [5]. The performance of this formulation
was compared to the performance of the "nite element corotational procedure [6] when
#exible multibody systems are considered. The results obtained from this comparative
study demonstrate the limitations of the incremental procedures in the analysis of #exible
multibody systems which are characterized by high inertia forces and motion and velocity
discontinuities.

In general, the absolute nodal co-ordinate formulation, due to the nature of the variables
employed, leads to a simple expression for the inertia forces and a non-linear expression for
0022-460X/00/340539#27 $35.00/0 ( 2000 Academic Press
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the elastic forces. One method used for formulating the elastic forces is to introduce a local
element co-ordinate system for the convenience of de"ning the element deformations [1}3].
This approach, however, leads to a complex expression for the elastic forces. Another
method which will be followed in this paper is to use a continuum mechanics approach
without introducing a local element co-ordinate system. As demonstrated in this paper, the
use of this approach leads to signi"cant simpli"cation in the vector of the elastic forces.
Several elastic force models are developed in this investigation. Numerical results are
presented in order to demonstrate the use of these models and test their performances in the
analysis of simple #exible multibody applications.

It is important to point out that several models for the large deformation and rotation
analysis were developed in the past [7}14]. Despite the fact that these investigations
represent an important background, such investigations are not directly applicable to the
subject of the study presented in this paper.

This paper is organized as follows. A brief review of the absolute nodal co-ordinate
formulation is presented in section 2. In this section, the co-ordinates and shape function
that will be repeatedly used in the following sections are de"ned. In section 3, the basic
concepts and relationships used in the development of the force models presented in this
paper are discussed. In section 4, three models for the elastic forces resulting from the
longitudinal deformations are presented. The elastic force models due to the transverse
deformations are presented in section 5. In section 6, an expression which is suitable for the
numerical evaluation of the strain energy is provided. In section 7, the use of the force
models and the strain energy models introduced in sections 4, 5 and 6 is demonstrated in the
analysis of the large deformations of simple #exible multibody systems. In section 8,
summary and conclusions drawn from the results of this investigation are presented.

2. ABSOLUTE NODAL CO-ORDINATE FORMULATION

In the absolute nodal co-ordinate formulation, the nodal co-ordinates of the elements are
de"ned in a "xed inertial co-ordinate system, and consequently no co-ordinate
transformation is required [1}3]. The element nodal co-ordinates represent global
displacements and slopes, and no in"nitesimal or "nite rotations are used as nodal
co-ordinates. Furthermore, no assumption on the magnitude of the element rotations is
made. In the absolute nodal co-ordinate formulation, elements such as beams and plates
that are considered in the "nite element literature as non-isoparametric, can be treated as
isoparametric elements.

The global position vector r of an arbitrary point P on the neutral axis of a two-
dimensional beam element is de"ned in terms of the nodal co-ordinates and the element
shape function, as shown in Figure 1, as
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where S is the global shape function which has a complete set of rigid-body modes, and e is
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Figure 1. (a) Original and (b) current con"gurations in the absolute nodal co-ordinate formulation.
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and the global slopes of the element nodes, that are de"ned as
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Here, x is the co-ordinate of an arbitrary point on the element in the undeformed
con"guration, and l is the original length of the beam element (at point A, x"0; while at
point B, x"l, as shown in Figure 1). A cubic polynomial is employed to describe both
components of the displacements. Therefore, the global shape function S can be written as
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where the functions s
i
"s

i
(m) are de"ned as
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and m"x/l. It can be shown that the preceding shape function contains a complete set of
rigid-body modes that can describe arbitrary rigid-body translational and rotational
displacements.

In the absolute nodal co-ordinate formulation, the use of slopes instead of rotations
allows the representation of complex shapes using a small number of elements. For
example, Figure 2 shows the con"guration of one element whose original length is equal to
5 units as the vector of nodal co-ordinates, using the same units, is given by:

e"[1)5 1)5 !3 !2 !1 1 !2 3]T.



Figure 2. Con"guration of a beam element with l"5 and e"[1)5 1)5 !3 !2 !1 1 !2 3]T.
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Using the fact that the element presented in this section is isoparametric and using the
principle of conservation of mass, which states that o

0
dx"o ds for a constant cross-

sectional area A, one can show that the absolute nodal co-ordinate formulation leads to
a constant mass matrix in the case of two-dimensional beam elements [2]. Here o is the
mass density, s is the arc length and o

0
is the mass density in the undeformed con"guration.

The global position r
G

of the center of mass G of an element is by de"nition given by

r
G
"

1

mP
V

ord<, (7)

where m is the total mass of the element, and < is its volume. In the preceding equation, all
the variables can be referred to the undeformed con"guration, leading to
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where the cross-sectional area A of the element is assumed constant. For o
0
"constant, one

obtains
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Hence, for arbitrary values of the nodal co-ordinates e
i
and for an arbitrary length l of the

beam element, the co-ordinates of the center of mass are given as a linear combination of the
nodal co-ordinates, regardless of the amount of deformation. Figure 2 shows the center of
mass G of the deformed element.

In order to develop the equations of motion of the element in the absolute nodal
co-ordinate formulation, the vector Q

k
of the elastic forces and the vector Q

e
of the

externally applied forces must be de"ned. The vector Q
k

can be de"ned using the strain
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energy ; as

Q
k
"A

L;
Le B

T
, (10)

while the vector Q
e
, that contains the generalized external forces, including the gravity force,

can be de"ned using the virtual work as

d=
e
"QT

e
de. (11)

Using the expressions of the kinetic energy, strain energy, and the virtual work, the dynamic
equations of the "nite element can be obtained in a matrix form as

MeK#Q
k
"Q

e
. (12)

As pointed out in reference [1], there are two methods that can be used to evaluate the
non-linear elastic forces of the element in the absolute nodal co-ordinate formulation. In the
"rst method, a local frame of reference is used for the element in order to de"ne the element
deformations. This approach leads to a complex expression for the elastic forces. The
second method is based on a continuum mechanics approach which does not require the
use of a local co-ordinate system for the "nite element. In this investigation, several models
based on the continuum mechanics approach are developed for the elastic forces of the
elements in the absolute nodal co-ordinate formulation. The performance of these models is
examined using numerical examples.

3. LARGE DEFORMATION BEAM MODEL

In this section, the basic concepts used in developing the beam models discussed in the
following sections are presented. In these models, the e!ect of the rotary inertia and the
e!ect of shear strain are neglected. Therefore, the beam element cross-sections are assumed
to remain plane and perpendicular to the beam center line. The con"guration of a beam
element at time t can be de"ned using the parametric equation

r"r (x), 0)x)l, (13)

where the vector r de"nes the co-ordinates of an arbitrary point on the beam axis, and x is
considered as a parameter that represents the coordinate of the point in the undeformed
con"guration. The in"nitesimal arc length is

ds"Jr@Tr@ dx, (14)

where

r@"
dr

dx
. (15)

It follows that the length of the beam after deformation is given by

P
l

ds"P
l

0

Jr@Tr@dx. (16)

The Serret}Frenet formulas [15] for the geometrical descriptions of curves provide the

su$cient tools for the analysis that follows. The quantity Jr@Tr@ represents the deformation
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gradient f for longitudinal deformations. This deformation gradient can be considered as
the Cauchy}Green longitudinal strain which is de"ned here as

f"ds/dx. (17)

Adopting a Lagrangian viewpoint, the longitudinal strain e
l
is de"ned by a relationship

between the current and the original length of an in"nitesimal segment of the beam as
follows:

ds2!dx2"2 dxe
l
dx, (18)

which implies that

e
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2
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Assuming isotropic materials, the strain energy due to the longitudinal deformation [16,17]
can be written as

;
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EAe2
l
dx, (20)

where E is Young's modulus. Note that in this development the problem of objectivity is
solved by referring all the quantities to the undeformed con"guration.

The e!ect of bending can be introduced using the equation [16]

M"EIi, (21)

where I is the second moment of area. The Serret}Frenet formulas give the following result
for the curvature i of a curve described in the parametric form of equation (13):

i"K
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ds2 K. (22)

In this case, the strain energy ;
t
due to bending can be written as
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Therefore, the expression for the strain energy that accounts for both axial and bending
e!ects is
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Note that the curvature of equation (22) can also be written as [15]

i"
Dr@]rAD
Dr@D3

. (25)

In this equation, both the numerator and the denominator depend on the amount of
longitudinal deformation that may also in#uence the bending deformations. However, in
the literature, the denominator in equation (25) is often considered equal to one, since the
curvature is approximated with the second spatial derivative of the transverse de#ection of
the beam [18,19]. In section 5, two transverse de#ection force models will be presented; one
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model considers the e!ects of the longitudinal deformation on the curvature, while in the
other model this e!ect is neglected.

For two-dimensional problems, equation (25) can be written as

i"
rATII r@

Dr@Tr@D3@2
"

rATII r@
f 3

, (26)

where

II"C
0 !1

1 0D. (27)

The expression of the curvature becomes much simpler in the special case of small
longitudinal deformations. In this case, when fK1, equation (22) yields

iKK
d2r

dx2 K"DrAD, (28)

and this assumptions leads to a signi"cant simpli"cation of the equation of the strain
energy. Note that this formula holds in the case of small longitudinal deformations; no
assumption has been made with regard to the amount of the transverse deformation.

4. LONGITUDINAL FORCE MODELS

In this section, several longitudinal force models that can be used in the absolute nodal
co-ordinate formulation are presented. Despite the fact that these models account for the
elastic non-linearities as described by the Green}Lagrangian strain measure, two of them
lead to expressions simpler than the one obtained by the model developed using the local
element co-ordinate system and a linear strain}displacement relationship.

For convenience, the following matrices are de"ned:

S
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where S
,m is the derivative of the shape function S de"ned in equation (5) with respect to the

dimensionless parameter m"x/l. Using equation (1), one obtains

r@Tr@"eTS@TS@e. (31)

Substituting equation (31) into equation (19), and using the de"nition of S
l
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equation (29), the longitudinal strain can be written as
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From this equation it is clear that
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and the vector Q
l
of the generalized elastic forces due to the longitudinal deformation can

be de"ned as
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which can also be written as

Q
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where the sti!ness matrix is given by
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Depending on the way the strain e
l

is presented in the preceding equation, di!erent
longitudinal force models can be obtained. In the remainder of this section, three models L1,
L2 and L3 are discussed.

4.1. FIRST MODEL L1

It is clear that if e
l
is assumed to be constant throughout the beam element, it is then

possible to factor it out of the integral sign of equation (34). Using this assumption and
assuming that E and A are constants, the vector of generalized elastic forces due to the
longitudinal deformation can be written as

Q
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In this equation, e6
l
is the average longitudinal strain along the element, and in the case of

small deformations it can be simply approximated as
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where d is the distance between the nodes of the elements de"ned as
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Using the constant strain assumption, the sti!ness matrix K
l
de"ned by equation (35) can be

written explicitly as
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This matrix, which has a very simple structure, is very similar to the sti!ness matrix
obtained in reference [19] when a "rst non-linear formulation is adopted for the elastic
forces. As it will be shown in section 6, the simplicity of the "rst model leads to signi"cant
reduction in the computer time when multibody systems are simulated.

4.2. SECOND MODEL L2

Recall that the sti!ness matrix of equation (40) is obtained using the assumption that the
longitudinal strain remains constant throughout the "nite element. Now this assumption is
relaxed, and in order to "nd a general expression for the longitudinal strain, the vector e of
nodal co-ordinates is written as the sum of two vectors,

e"e
r
#e

f
, (41)

where e
r
represents an arbitrary rigid-body displacement,

e
r
"[x y c s x#lc y#ls c s]T, (42)

and e
f
is the result of the di!erence e!e

r
. In equation (42), x and y are arbitrary rigid-body

translations, and c and s stand for cos h and sin h, respectively, where h represents an
arbitrary rigid-body rotation. One can easily show that

eT
r
S
l
e
r
"1.

Note that, for small deformations, the quantity eTS
l
e is very close to one, and the right-hand

side of equation (32) can be di$cult to numerically determine with good accuracy. However,
with the use of the preceding identity, the longitudinal strain becomes

e
l
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2
(e!e

r
)TS

l
(e#e

r
), (43)

which shows that, with a convenient choice for e
r
, the strain e

l
can be accurately determined.

The vector of generalized elastic forces due to the longitudinal deformation is given by
equation (35), where the matrix K

l
, assuming that E and A are constant, is

K
l
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1

0

e
l
S
l
dm. (44)

Since e
r
in equation (43) is arbitrary, one may conveniently choose e

r
"[0 0 1 0 l 0 1 0]T.

Using this vector and equation (43), the sti!ness matrix of equation (44) can be explicitly
written as

K
l
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A 0 B 0 !A 0 C 0

A 0 B 0 !A 0 C

D 0 !B 0 E 0

D 0 !B 0 E

A 0 !C 0

sym A 0 !C

F 0

F

, (45)
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which contains six independent elements A, B, C, D, E, and F. In order to write the
expression of these six components, it is convenient to introduce the quantities
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where d"Jd2
x
#d2

y
is also de"ned by equation (39), and

a
x
"le

3
, a

y
"le

4
, a"Ja2

x
#a2

y
, (47)

b
x
"le

7
, b

y
"le

8
, b"Jb2

x
#b2

y
. (48)

Using these de"nitions, the six independent elements that appear in equation (45) can be
written as
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The matrix K
l

de"ned by equation (45) becomes the null matrix in case of rigid-body
displacements. This result has been obtained without using any simpli"cation in the
development of this sti!ness matrix.

Note that the matrix K
l
is not unique. It is possible to follow a di!erent route to evaluate

the vector of generalized elastic forces due to longitudinal deformations. Since e
l
is a scalar,

the vector Q
l
of equation (34) can be written as

Q
l
"P

l

0
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l
e)e

l
dx. (55)

Using the de"nition of longitudinal strain given by equation (32), one obtains

Q
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Assuming E and A as constants, the sti!ness matrix K
l
can be written as
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which remains symmetric. However, it can be shown that the sti!ness matrix of the
preceding equation is a full matrix whose elements are quadratic functions of the nodal
co-ordinates e .
i
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4.3. THIRD MODEL L3

The six independent elements A, B, C, D, E, and F of the sti!ness matrix K
l
de"ned by

equation (45) can be simpli"ed in the case of small deformations. Using the "rst element as
an example, it is possible to show that A is the sum of two quantities that are small when
the deformation within the element becomes in"nitesimal. Introducing an average strain
e6
l
as a measure of the deformation, it is possible to write
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Here the usual mathematical notation has been considered, such that O
A
(e6
l
) denotes an

in"nitesimal quantity of the same order as e6
l
, while o

A
(e6
l
) is an in"nitesimal quantity of

higher order. To prove this fact, it is enough to show that when e6
l
P0, each term in

o
A

becomes the square of an in"nitesimal quantity, which can be neglected. Using a similar
argument for each element of the matrix given by equation (45), one can show that the
elements A, B, C, D, E, and F can be written as
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The elements A, B, C, D, E, and F of equations (61)}(66) are written as the sum of two
terms, where only the "rst term is important when the variations in the longitudinal
deformation within the element are small. In this case, one obtains the sti!ness matrix of
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Model L1. However, the variations in the longitudinal deformation within the elements are
not always small as in the case in some applications including the simple free falling
pendulum example discussed in section 7. Therefore, it is important to consider the actual
distribution of the deformation within the element length. Equations (61)}(66) show that, in
the case of small deformations, only the three quantities e

M
, e

A
and e

B
de"ned by equation

(67) can be used to represent the distribution of the longitudinal strain. Using these three
quantities, the sti!ness matrix K
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can be written as
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It can be shown that the application of this force model to simple static problems leads to
the correct analytical solution.

Model L3 is slightly more complex than Model L1, but it can be used in the general case
of small deformations, which is the case in many engineering applications. Note that in
developing this model, no assumptions are introduced except the small deformation
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assumption. In the problems where this assumption is not justi"ed, the use of Model L2
becomes necessary, with the drawback of an increased simulation time. The advantages and
drawbacks of the three models presented in this section will be discussed in section 6.

5. TRANSVERSE FORCE MODELS

In this section, two simple models for the elastic forces associated with the transverse
deformation are developed for the absolute nodal coordinate formulation. The "rst Model
T1 can be used when the longitudinal deformation is small. The second Model T2, on the
other hand, can be used in the case of large longitudinal and transverse deformations.

5.1. FIRST MODEL T1

For this model, the simpli"ed expression of the curvature given by equation (28) is
considered. Using equation (2), one obtains

i2"eTSATSAe. (72)

The strain energy de"ned by equation (23) in this case can be written as

;
t
"1

2
eTK

t
e, (73)

where the sti!ness matrix K
t
is constant and de"ned as

K
t
"P

l

0

EISATSA dx. (74)

Assuming E and I are constant and using the shape function of equation (5), the sti!ness
matrix K

t
can be written explicitly as

K
t
"

EI

l3

12 0 6l 0 !12 0 6l 0

12 0 6l 0 !12 0 6l

4l2 0 !6l 0 2l2 0

4l2 0 !6l 0 2l2

12 0 !6l 0

sym 12 0 !6l

4l2 0

4l2

. (75)

This constant matrix is similar to the sti!ness matrix used in linear structural dynamics, and
has also been obtained by Takahashi and Shimizu [20]. The vector of elastic forces is then
given by

Q
t
"K

t
e. (76)

5.2. SECOND MODEL T2

When the longitudinal deformation is not small, the use of equation (28) is no longer
justi"ed, as it is clear from equation (26) that shows that the curvature can signi"cantly
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change in the case of a large longitudinal deformation. In this case, equation (26) must be
used. The numerator of this equation, written in terms of the absolute nodal co-ordinates,
becomes

r@TII rA"eTSK
t
e, (77)

where the matrix SK
t
is de"ned as

SK
t
"S@TII SA"

1

l3
ST
,mII S,mm. (78)

Note that the curvature is a scalar, and it is equal to its transpose, so that the following
relation holds:

eTSK
t
e"eTS

t
e, (79)

where the symmetric matrix S
t
has been introduced,

S
t
"1

2
(SK

t
#SK T

t
). (80)

The matrix S
t
is a sparse matrix with a very simple structure. Hence, without using any

approximation, the curvature can be written as

i"
eTS

t
e

f 3
. (81)

This equation can be substituted into the strain energy expression ;
t
of equation (23) in

order to determine the elastic forces due to the transverse deformation. Equation (81),
however, will lead to a complex expression for the elastic forces. This expression can be
signi"cantly simpli"ed if the longitudinal deformation within the element is assumed
constant in developing the transverse elastic forces. In this case, the deformation gradient
f is assumed equal to a constant value fM :

ds

dx
"fM"const. (82)

It follows that

d2r

ds2
"

1

fM 2
rA, (83)

and consequently

i2"
1

fM 4
eTSATSAe. (84)

Using the preceding equation, the de"nition of the strain energy;
t
of equation (23) and the

shape function of equation (5), it can be shown that the vector of the elastic forces due to the
transverse deformation is given by

Q
t
"A

L;
t

Le B
T
"EIlC

1

fM 4P
1

0

SATSAdm!
2

fM 2P
1

0

i2dm S1
lDe. (85)
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In order to obtain equation (85), the following de"nition of the average deformation
gradient fM has been used:

fM"SP
1

0

f 2 dm"SP
1

0

r@Tr@dm"JeTS1 le. (86)

In a similar manner, one can de"ne an average curvature as

i6 "SP
1

0

i2 dm"
1

fM 2SP
1

0

rATrA dm"
1

fM 2SeTAP
1

0

SATSA dmBe. (87)

Equation (85) leads to the vector of elastic forces,

Q
t
"(K
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#K
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)e, (88)

where
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and
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The matrix K
t1

of equation (89) is very similar to the matrix K
t
of equation (75); K

t1
reduces

to K
t
in the case of small deformations, when fMK1. The matrix K

t2
contains the terms

related to the derivative LfM /Le; these terms appear when one di!erentiates equation (84) with
respect to the vector of nodal coordinates. In the case of small deformations, the curvature is
small (i6 K0), and K

t2
reduces to the null matrix.

Model T2 for the elastic forces due to transverse deformations should be used with Model
L2 presented in the preceding section to study the general case of large deformations. In
order to meet the assumption of constant longitudinal deformation within the "nite
element, a su$cient number of elements should also be used.
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6. EXPRESSION OF THE STRAIN ENERGY

The strain energy expression presented in section 2 is used in this investigation to
determine the vector of the elastic forces in the absolute nodal co-ordinate formulation. The
vector of the elastic forces was de"ned as

Q"A
L;
Le B

T
"Ke,

where; is the strain energy, and K is the sti!ness matrix. During the simulation of the large
deformations, one may be interested in calculating the strain energy of the elements. This
feature is available in many "nite element codes, and it is the purpose of this section to
develop an expression for the strain energy; in the absolute nodal co-ordinate formulation
that can be easily calculated.

When the sti!ness matrix K is constant, the strain energy has a simple expression, which
is a quadratic form of the co-ordinates. This is not the case when the absolute nodal
co-ordinates are employed, since the sti!ness matrix is not a constant. Nevertheless, it is
always possible to write the strain energy in the form

;"1
2
eTK(U)e, (91)

where the superscript (;) has been used to point out that, in general, the matrix K(U) is not
equal to the matrix K.

6.1. LONGITUDINAL DEFORMATIONS

The expression of the strain energy;
l
due to the longitudinal deformation can be written

such that it resembles a quadratic form. Equation (91), written only for the longitudinal
deformation, becomes

;
l
"1

2
eTK(U)

l
e. (92)

Substituting equation (32) into equation (20), it is possible to show that the matrix K(U)
l

is
de"ned as

K(U)
l

"

1

2
K

l
#

EAl

4
(I
e
!S1

l
). (93)

In this equation, K
l
is the sti!ness matrix for longitudinal deformations, SM

l
is the matrix

de"ned by equation (30), and I
e
is given by the diagonal matrix
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7
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, (94)
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where e
i
are the element nodal co-ordinates. One can easily prove that eTIee"1. Equation

(93) demonstrates that the strain energy can be written in a compact form, as in the case of
linear structural mechanics. However, the matrix given by equation (93) is not suitable for
numerical evaluation, because of the structure of the matrix I

e
. In order to numerically

evaluate the strain energy, the following expression can be used:

;
l
"

1

2C
1

2
eTK

l
e#

EAl

4
(1!eTS1

l
e)D. (95)

Equations (93) and (95) hold in the cases of small and large deformations. The matrix
K

l
depends on the model that is considered for the evaluation of the elastic forces.

6.2. TRANSVERSE DEFORMATIONS

When the simple Model T1 is used, there is no problem in "nding an expression for the
strain energy due to transverse deformations since the sti!ness matrix K

t
is constant.

Consequently, it is possible to write

;
t
"1

2
eTK(U)

t
e, (96)

where the matrix K(U)
t

is equal to the matrix K
t

of equation (75). When Model T2 is
employed, the sti!ness matrix is no longer constant. However, the expression of the strain
energy remains simple. Substituting equation (84) into equation (23) and using the
assumptions of Model T2, one obtains K(U)

t
"K

t1
, where K

t1
is given by equation (89).

7. NUMERICAL RESULTS

In this section, numerical results are presented in order to examine the performance of the
elastic force models presented in the preceding sections. Di!erent combinations of the
Models L1, L2, L3, T1 and T2 shown in Table 1 are used. Model I is the simplest and it
employs the Models L1 and T1. Model II includes the elastic forces de"ned by Models L2
and T1. Model III is the combination of Models L3 and T1, and Model IV is the
combination of Models L2 and T2. The reason why Model T2 was not combined with
Model L1 or L3 is that these longitudinal deformation models are obtained with the
assumption of small deformation. Under this assumption, there is no di!erence in
considering Model T1 or Model T2, as fMK1 and K

t2
K0. On the other hand, in the case of

large longitudinal deformations, Model L2 should be used and combined with Model T2. In
TABLE 1

Combination of the elastic force models

Model Longitudinal force model Transverse force model

0 Linear elastic model as presented in reference [1, 3, 21]
I L1 T1
II L2 T1
III L3 T1
IV L2 T2
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choosing these model combinations, consistency of the assumptions was taken into
consideration.

All these models, which are obtained using a continuum mechanics approach, are
compared to the linear elastic model that employs a local frame for the "nite element
[1, 3, 21]. Two examples are considered in this section; the "rst is a pendulum free to fall
under the e!ect of gravity, and the second is a four-bar mechanism with a very #exible
connecting rod.

7.1. FREE FALLING PENDULUM

In this "rst example, the free falling of a very #exible two-dimensional beam under the e!ect
of gravity is considered. The beam is connected to the ground by a pin joint at one end, as
shown in Figure 3. The beam has a length of 1)2 m, a circular cross section with an area of
0)0018 m2, a second moment of area of 1)215E!08 m4, a density of 5540 kg/m3, and
a modulus of elasticity of 0)700E#06 Pa. In the original con"guration, the beam is
horizontal and has zero initial velocity. Two cases are considered in the analysis of the falling
pendulum. In the "rst case, the beam is assumed to fall under the e!ect of gravity, while in the
second case the beam is accelerated by increasing the gravity constant to 50 m/s2.

Figure 4 shows the vertical position of the free end when 12 elements are used to represent
the beam motion. As expected, due to the large deformation, Models I and III do not
converge, and their results are not reported in this "gure. The results of Models II and IV
are almost identical, while Model 0 gives slightly di!erent results. The CPU times for all
these simulations are shown in Table 2.

When 40 elements are employed to study the same problem, all models converge, as
shown by Figure 5. It is interesting to note that Models II and IV lead to the
Figure 4. Vertical position of the free end of the pendulum using 12 elements: - - -, Model 0;*, Model II, }*},
Model IV; a"9)81 m/s2.

Figure 3. Free falling pendulum.



TABLE 2

CP; timess and CP; time percentages with respect to Model 0

Simulation Model 0 Model I Model II Model III Model IV

Free falling pendulum, 9)81m/s2, 12 el. 6 (100%) * 6 (100%) * 7 (117%)
Free falling pendulum, 9)81m/s2, 40 el. 75 (100%) 34 (45%) 83 (111%) 60 (80%) 90 (120%)
Free falling pendulum, 50m/s2, 12 el. 9 (100%) * 10 (111%) * 12 (133%)
Free falling pendulum, 50m/s2, 40 el. 95 (100%) * 126 (133%) * 148 (156%)
Free falling pendulum, 50m/s2, 100 el. 1573 (100%) 1354 (86%) 2077 (132%) 1792 (114%) 2235 (142%)

sThe CPU times (s) are obtained using a PC Pentium III 500 MHz. A value is reported only if the model converges for the whole simulation time of 1)1 s.
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Figure 5. Vertical position of the free end of the pendulum using 40 elements: - - -, Model 0; *, Model I; *,
Model II; s, Model III; *, Model IV; a"9)81 m/s2.

Figure 6. Deformation gradient f at the free end of the pendulum using Model I and 40 elements; a"9)81 m/s2.
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same results that have been obtained using only 12 elements. Furthermore, the results
obtained using Model II are very close to the results of Model IV. Figure 6 shows the value
of the deformation gradient f at the free end as a function of time. In this case, the
deformation gradient is simply given by Je2

3
#e2

4
, where e

3
and e

4
are the values of the

slopes at the free end. As explained in Section 3, f should be equal to one in case of no
deformation, and this also should be the case at the free end of the pendulum. Figure
6 shows the inaccurate results obtained using Model I, that employs an average value of the
longitudinal strain throughout the "nite element. Using the other models, this incorrect
result is not obtained.

The free falling pendulum is a conservative system, and a simple energy analysis can be
performed to demonstrate this fact. Three di!erent types of energy are considered in this
analysis: the kinetic energy ¹, the strain energy ; and the potential energy < associated
with the gravity forces. The kinetic energy ¹i of the ith element is calculated as

¹ i"
1

2P
l
i

0

Aioi
0
r5 iTr5 i dx,

where li is the length, Ai is the cross-sectional area, and oi
0

is the density of the element. In
this equation, r5 i is the time derivative of the global position vector of an arbitrary point on
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the element. The strain energy ;i is calculated as the sum of the quantities ;i
l
given by

equation (95) and ;i
t
given by equation (96). Using equations (8) and (9), the potential

energy <i due to the distributed gravity forces is de"ned as

<i"gP
l
i

0

Aioi
0
ri
2
dx"migyi

G
,

where mi is the mass of the ith "nite element, g is the gravity constant and yi
G

is the vertical
position of the center of mass (positive upward). Since the system is conservative, the sum of
these three energy types, evaluated for the whole system, should be constant:

+ (¹i#;i#<i)"const.

In this case this constant is equal to zero for the given initial conditions. Figure 7 shows
these three types of energy and the total energy as a function of time. The numerical results
are obtained using Model II and 12 "nite elements. It is interesting to note that the results
obtained using 40 elements are almost identical. This example shows that the solution
obtained with the absolute nodal co-ordinate formulation is consistent with the law of
physics even though this is a problem of large deformations simulated using a relatively
small number of elements (12).

Increasing the value of the acceleration constant to 50 m/s2 results in a very large
deformation. In this case, when 12 elements are used, the linear elastic Model 0 does not
agree well with Models II and IV, as shown by Figure 8. As expected, using only 12
elements, Models I and III do not converge. The simulations of the pendulum that falls
under the e!ect of an acceleration equal to 50 m/s2 have been repeated using 40 elements.
The results obtained are almost identical to the results previously presented in the case of 12
elements, and for this reason they are not presented. When 100 elements are employed for
the same pendulum problem, Models I and III "nally converge despite the large amount of
deformation, as shown by Figure 9. This "gure shows that Models I and III lead to very
similar results, as well as the results of Model II are very close to the results of Model IV. As
demonstrated by the motion animation shown in Figure 10, this example represents an
extreme case of large deformation problem that involves high inertia forces. While Model
0 can be used to obtain a reasonable qualitative response in such an extreme case, as
demonstrated by the result of Figure 9, a non-linear model can be used to obtain better
Figure 7. Energy balance for the free falling pendulum. Results obtained using Model II and 12 elements: - - -,
strain energy; *, kinetic energy; }*}, potential energy; *, total energy; a"9)81 m/s2.



Figure 8. Vertical position of the free end of the pendulum using 12 elements: - - -, Model 0;*, Model II; }*},
Model IV; a"50 m/s2.

Figure 9. Vertical position of the free end of the pendulum using 100 elements: - - -, Model 0;*, Model I; 0,
Model II; s, Model III; *, Model IV; a"50 m/s2.
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convergence results. Nonetheless, Model 0, as demonstrated in the previous example and in
the following example, converges to the correct solutions in many large deformation
problems. The energy analysis, repeated for this case of increased value of the acceleration,
gives results that are consistent with the principle of energy conservation, as shown by
Figure 11.

7.2. FOUR-BAR MECHANISM

The four-bar mechanism considered in this second example is shown in Figure 12. The
mechanism consists of a crankshaft, a connecting rod (coupler) and a follower. The
mechanism is driven by a moment applied to the crankshaft. The driving moment is shown
in Figure 13 as a function of time. The inertia, geometric, and elastic properties of the
components of the four-bar mechanism are shown in Table 3. The table shows the mass m,
the cross-sectional area A, the second moment of area I, the length l, and the modulus of
elasticity E of the mechanism components. All components of the four-bar mechanism are
assumed to be made of uniform beams which are initially straight. The gravity e!ect is taken
into consideration. Pin joints are used to describe the connectivity conditions between the



Figure 10. Con"gurations of the free falling pendulum at di!erent times for the case a"50 m/s2 (values of time
given in seconds).

Figure 11. Energy balance for the free falling pendulum. Results obtained using Model II and 12 elements: - - -,
strain energy; *, kinetic energy; }*}, potential energy; *, total energy; a"50 m/s2.

Figure 12. Four-bar mechanism.
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components of the four-bar mechanism. The connecting rod of this mechanism is chosen to
be very #exible, in order to allow for the large deformation.

In a "rst simulation model, 6 elements are used for the connecting rod, while only one
element is used for the crankshaft and 4 elements are used for the follower. Therefore, the
"rst simulation employs a total number of 11 elements. Figure 14 shows the transverse



TABLE 3

Parameters used in the simulation of the four-bar mechanism

Body m (kg) A (m2) I (m4) l (m) E (Pa)

Crankshaft 0)6811 1)257E!03 1)257E!07 0)2 1)000E#09
Coupler 2)4740 1)960E!03 3)068E!07 0)9 5)000E#06
Follower 1)4700 7)068E!04 3)976E!08 0)5196152 5)000E#08

Figure 13. Moment applied to the crankshaft.

Figure 14. Transverse de#ection of the midpoint of the crankshaft using 11 elements: - - -, Model 0;*, Model II;
}*}, Model IV.
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de#ection of the midpoint of the connecting rod using di!erent models. The transverse
de#ection is determined as the distance of the midpoint to the straight line that connects the
ends of the coupler. Due to the large amount of deformation, Models I and III do not
converge. Models II and IV give very similar results, and Model 0 gives di!erent results
because of the small number of elements.

Another simulation is performed by increasing the number of elements of the connecting
rod from 6 to 36, so that the total number of elements for the whole system is increased
from 11 to 41. Figure 15 shows a comparison between the results obtained using all



Figure 15. Transverse de#ection of the midpoint of the crankshaft using 41 elements: - - -, Model 0;*, Model I;
0, Model II; s, Model III; *, Model IV.
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the models for the transverse de#ection of the midpoint of the connecting rod. All
the results are in good agreement. The results obtained using Models II and IV and 41
"nite elements are almost identical to the results obtained using the same models and 11
elements.

The four-bar mechanism driven by the moment shown in Figure 13 is not a conservative
system. An energy analysis, however, can still be made, and the governing equation in this
case is

+ (¹i#;i#<i)"=,

where ¹i, ;i and <i are the kinetic energy, the strain energy and the potential energy,
respectively, of the ith "nite element, and= is the work performed by the driving moment.
The sum is extended to all the elements of the system. The kinetic energy and the strain
energy are de"ned as already shown in this section. The potential energy <i is de"ned as

<i"migyi
G
!<i

0
,

where mi, g and yi
G

have already been de"ned, and <i
0

is a constant de"ned such that <i"0
for t"0. The work= is calculated as

="P
h(t)

0

M dh,

where h (t) is the rotation angle of the cross section of the crankshaft where the moment is
applied. Figure 16 shows the di!erent types of energy and the work done by the driving
moment. It is clear that the results of the absolute nodal co-ordinate formulation are again
consistent with the principle of work and energy. The performance of all the elastic force
models in terms of computer time is shown in Table 4.

8. SUMMARY AND CONCLUSIONS

In this investigation, several models for the elastic forces due to the longitudinal and
transverse deformation are developed for the use in the absolute nodal co-ordinate



Figure 16. Energy balance for the four-bar mechanism. Results obtained using Model II and 11 elements: - - -,
strain energy; *, kinetic energy; }*}, potential energy; *, total energy; e, work.

TABLE 4

CP; timess and CP; time percentages with respect to Model 0

Simulation Model 0 Model I Model II Model III Model IV

Four-bar mechanism, 11 elements 148 (100%) * 135 (191%) * 165 (111%)
Four-bar mechanism, 41 elements 1615 (100%) 985 (61%) 1498 (193%) 1110 (69%) 1736 (107%)

sThe CPU times (s) are obtained using a PC Pentium III 500 MHz. A value is reported only if the model
converges for the whole simulation time of 1)1 s.
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formulation. Two approaches can be used to formulate the elastic forces in the absolute
nodal co-ordinate formulation. The "rst approach, which employs an element co-ordinate
system, leads to a complex expression for the elastic forces even in the case of a linear elastic
model [1]. A second approach based on a standard continuum mechanics procedure was
recommended in reference [1] in order to obtain a much simpler expression for the elastic
forces. It is the objective of this paper to show the signi"cant simpli"cations that can be
achieved by using the continuum mechanics approach. Several simple models that account
for the e!ect of elastic nonlinearities due to the longitudinal deformations are presented.
The assumptions used in developing these models are clearly stated and the advantages and
drawbacks of these models are discussed. The results presented in this investigation also
demonstrate the problems associated with the use of the linear elastic model when large
deformation problems are considered. Because of the simplicity of the non-linear force
models developed based on the continuum mechanics approach, signi"cant saving in
computer time could be achieved as compared to the force models developed using the local
frame for the "nite element based on a linear elastic model [1].
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